Pembelajaran yang terinspirasi STEAM: Menumbuhkan Keterampilan Berpikir Kritis melalui Video Tutorial

Author


Endang Yanuarti Rahayu(1Mail), Yuliani Nurani(2), Sri Martini Meilanie(3),
Pendidikan Anak Usia Dini, Universitas Negeri Jakarta, Indonesia(1)
Pendidikan Anak Usia Dini, Universitas Negeri Jakarta, Indonesia(2)
Pendidikan Anak Usia Dini, Universitas Negeri Jakarta, Indonesia(3)

Mail Corresponding Author
Article Analytic
 PDF Full Text   [File Size: 889KB]

Published : 2023-05-15

Article can trace at:


Article Metrics

Abstract Views: 581 times PDF Downloaded: 252 times

Abstract


STEAM menawarkan banyak manfaat dalam proses pembelajaran bagi anak kecil atau usia dini. Penelitian ini bertujuan dalam mendeskripsikan keterampilan berpikir kritis bagi anak-anak dalam pembelajaran STEAM dengan perantara video tutorial. Pembelajaran STEAM melalui video tutorial mengintergrasikan lima konten pembelajaran dalam satu kegiatan. Penelitian ini menggunakan pendekatan ADDIE dengan analisis data deskriptif kuantitatif. Subjek penelitian ini meliputi 10 anak usia 5-6 tahun dan 2 orang guru pada lembaga non formal wilayah Bekasi Timur Kota Bekasi yaitu SPS Asoka. Hasil penelitian secara keseluruhan memperlihatkan bahwasanya pembelajaran STEAM bisa mengembangkan keterampilan untuk kritis dalam berfikir anak dilihat dari hasil persentase rata-rata observasi ke-1 dan ke-2 serta dilanjutkan hasil angket kelayakan video tutorial diperoleh video layak digunakan dalam pembelajaran STEAM untuk mengembangkan keterampilan berpikir kritis anak. Secara implikasi, untuk mengembangkan pemikiran kritis, salah satu dari empat keterampilan dasar (4C) pembelajaran STEAM, pendidik, peneliti, dan pembuat kebijakan menyediakan pengalaman belajar STEAM di indoor maupun outdoor bagi peserta didik.


Keywords


steam; pembelajaran; berpikir kritis; paud; video tutorial

References


Allina, B. (2018). The development of STEAM educational policy to promote student creativity and social empowerment. Arts Education Policy Review, 119(2), 77–87. https://doi.org/10.1080/10632913.2017.1296392

Appamaraka, S., Suksringarm, P., & Singseewo, A. (2009). Effects of learning environmental education using the 5Es-learning cycle approach with the metacognitive moves and the teacher’s handbook approach on learning achievement, integrated science process skills and critical thinking of high school (grade 9) st. Pakistan Journal of Social Sciences, 6(5), 287–291. https://www.medwelljournals.com/abstract/?doi=pjssci.2009.287.291

Blackley, S., Sheffield, R., & Koul, R. (2018). Using a Makerspace approach to engage Indonesian primary students with STEM. Issues in Educational Research, 28(1), 18–42.

Blake, R. A., & Liou-Mark, J. (2015). Enhancing diversity in STEM interdisciplinary learning. In STEM education: Concepts, methodologies, tools, and applications (pp. 997–1019). IGI Global. https://doi.org/10.4018/978-1-4666-7363-2.ch054

Bob, B. (2009). A Problem based on-line Mathematics Course and its Affect on Critical Thinking, Reasoning Skills st and Academic Achievement. Proceedings of the 31st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Atlanta, GA: Georgia State University.

Bragaw, D., Bragaw, K. A., & Smith, E. (1995). Back to the future: Toward curriculum integration. Middle School Journal, 27(2), 39–46.

Branch, R. M. (2009). Instructional Design: The ADDIE Approach. Springer. https://doi.org/10.1007/978-0-387-09506-6

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. 18(1), 32-42. https://doi.org/10.3102/0013189X018001032

Chaffee, J. (1994). Thinking critically (10. Baskı). Boston: Houghton Mifflin.

Chesloff, J. D. (2013). STEM education must start in early childhood. Education Week, 32(23), 27–32.

Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019). A critical review of STEAM (science, technology, engineering, arts, and mathematics). Oxford research encyclopedia of education. https://doi.org/10.1093/acrefore/9780190264093.013.398

Costantino, T. (2018). STEAM by another name: Transdisciplinary practice in art and design education. Arts Education Policy Review, 119(2), 100–106. https://doi.org/10.1080/10632913.2017.1292973

Council, N. R. (2010). Standards for K-12 engineering education? National Academies Press.

Council, N. R. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Daher, W., & Shahbari, J. A. (2020). Design of STEM activities: Experiences and perceptions of prospective secondary school teachers. International Journal of Emerging Technologies in Learning (IJET), 15(4), 112–128. https://doi.org/10.3991/ijet.v15i04.11689

Dejarnette, N. (2018). Implementing STEAM in the Early Childhood Classroom. European Journal of STEM Education, 3. https://doi.org/10.20897/ejsteme/3878

Duran, M., & Sendag, S. (2012). A preliminary investigation into critical thinking skills of urban high school students: Role of an IT/STEM program. Creative Education, 3(02), 241. https://doi.org/10.4236/ce.2012.32038

Ernst, J., & Monroe, M. (2006). The effects of environment‐based education on students’ critical thinking skills and disposition toward critical thinking: Reprinted from Environmental Education Research (2004) 10 (4), pp. 507–522. Environmental Education Research, 12(3–4), 429–443. https://doi.org/10.1080/13504620600942998

Good, J. J., Bourne, K. A., & Drake, R. G. (2020). The impact of classroom diversity philosophies on the STEM performance of undergraduate students of color. Journal of Experimental Social Psychology, 91, 104026. https://doi.org/10.1016/j.jesp.2020.104026

Guthrie, J. T., Wigfield, A., & VonSecker, C. (2000). Effects of integrated instruction on motivation and strategy use in reading. Journal of Educational Psychology, 92(2), 331. https://doi.org/10.1037/0022-0663.92.2.331

Guyotte, K. W., Sochacka, N. W., Costantino, T. E., Walther, J., & Kellam, N. N. (2014). STEAM as social practice: Cultivating creativity in transdisciplinary spaces. Art Education, 67(6), 12–19. https://doi.org/10.1080/00043125.2014.11519293

HACIOĞLU, Y., Yamak, H., & Kavak, N. (2016). Mühendislik tasarım temelli fen eğitimi ile ilgili öğretmen görüşleri. Bartın University Journal of Faculty of Education, 5(3), 807–830. https://doi.org/10.14686/buefad.v5i3.5000195411

Hacioğlu, Y., Yamak, H., & Kavak, N. (2017). The opinions of prospective science teachers regarding STEM education: The engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2), 649–684. https://dergipark.org.tr/en/pub/gefad/issue/30949/335366

Hacıoğlu, Y. (2017). The effect of science, technology, engineering and mathematics (STEM) educationbased activities on prospective science teachers’ critical and creative thinking skills. Unpublished Doctoral Thesis). Gazi University, Ankara. https://files.eric.ed.gov/fulltext/EJ1308420.pdf

Han, H. S., & Brown, E. T. (2013). Effects of critical thinking intervention for early childhood teacher candidates. The Teacher Educator, 48(2), 110–127. https://doi.org/10.1080/08878730.2012.760699

Hapidin, Syarah, E. S., Pujianti, Y., & Gunarti, W. (2022). Instilling Children ’ s Ocean Literacy Through Comic Media : STEAM to R-SLAMET Learning Design for ECE educators. Jurnal Pendidikan Anak Usia Dini, 16(1), 1–16. https://doi.org/10.21009/JPUD.161.01

Heimer, L., & Winokur, J. (2015). Preparing teachers of young children: How an interdisciplinary curriculum approach is understood, supported, and enacted among students and faculty. Journal of Early Childhood Teacher Education, 36(4), 289–308. https://doi.org/10.1080/10901027.2015.1100144

Hove, G. (2011). Developing critical thinking skills in the high school English classroom (Unpublished master’s thesis). University of Wisconsin-Stout, Menominee, WI. https://www2.uwstout.edu/content/lib/thesis/2011/2011hoveg.pdf

Hughes, J. M. (2017). Digital making with “at-risk” youth. The International Journal of Information and Learning Technology. https://doi.org/10.1108/IJILT-08-2016-0037

Hurley, M. M. (2001). Reviewing integrated science and mathematics: The search for evidence and definitions from new perspectives. School Science and Mathematics, 101(5), 259–268. https://doi.org/10.1111/j.1949-8594.2001.tb18028.x

Jamil, F. M., Linder, S. M., & Stegelin, D. A. (2018). Early childhood teacher beliefs about STEAM education after a professional development conference. Early Childhood Education Journal, 46(4), 409–417. https://doi.org/10.1007/s10643-017-0875-5

Johnson, C. C. (2018). Education in the innovation age. In School Science and Mathematics (Vol. 118, Issue 8, pp. 333–334). Wiley Online Library. https://doi.org/10.1111/ssm.12309

Jonassen, D. H. (1997). Instructional Design Model for wellstructured Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development, 45(1), 65–94. https://doi.org/10.1007/BF02299613

Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255. https://doi.org/10.1007/s10643-012-0554-5

Kim, H., Song, M., & Park, S. (2018). A Study on Designing and M-STEAM Class with Smart Devices for Early childhood in Korea. International Journal of Pure and Applied Mathematics, 118, 24. https://acadpubl.eu/hub/2018-118-24/1/155.pdf

Kuhn, D., & Dean David, J. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273. https://doi.org/10.1207/s15430421tip4304_4

Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547–552. https://doi.org/10.1016/j.procs.2013.09.317

Larmer, J., & Mergendoller, J. R. (2010). Seven essentials for project-based learning. Educational Leadership, 68(1), 34–37. https://www.ascd.org/el/articles/seven-essentials-for-project-based-learning

Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. Art Education, 69(6), 44–49. https://doi.org/10.1080/00043125.2016.1224873

Liao, C., Motter, J. L., & Patton, R. M. (2016). Tech-savvy girls: Learning 21st-century skills through STEAM digital artmaking. Art Education, 69(4), 29–35. https://doi.org/10.1080/00043125.2016.1176492

Lindeman, K. W., & Anderson, E. M. (2015). Using blocks to develop 21st century skills. YC Young Children, 70(1), 36. https://www.naeyc.org/resources/pubs/yc/mar2015/using-blocks

Lindeman, K. W., Jabot, M., & Berkley, M. T. (2014). The role of STEM (or STEAM) in the early childhood setting. In Learning across the early childhood curriculum (Vol. 17, pp. 95–114). Emerald Group Publishing Limited. https://doi.org/10.1108/S0270-4021(2013)0000017009

Mater, N. R., Haj Hussein, M. J., Salha, S. H., Draidi, F. R., Shaqour, A. Z., Qatanani, N., & Affouneh, S. (2022). The effect of the integration of STEM on critical thinking and technology acceptance model. Educational Studies, 48(5), 642–658. https://doi.org/10.1080/03055698.2020.1793736

Mayer, R. E., & Moreno, R. (2010). Techniques that reduce extraneous cognitive load and manage intrinsic cognitive load during multimedia learning. In J. L. Plass, R. Moreno & R. Brünken (Eds.), Cognitive load theory (pp. 131–152). Cambridge University Press. https://doi.org/10.1017/CBO9780511844744.009

Meilanie, R. S. M., & Syamsiatin, E. (2020). Multi Perspectives on Play Based Curriculum Quality Standards in the Center Learning Model. Jurnal Pendidikan Usia Dini, 14(1), 15–31. https://doi.org/10.21009/JPUD.141.02

Modi, T. (2011). Living in the Innovation Age: Five Principles for Prospering in this New Era. TekNirvana.

Morrison, J. (2006). Attributes of STEM education: The student, the school, the classroom. TIES (Teaching Institute for Excellence in STEM), 20, 2–7. http://www.leadingpbl.org/f/Jans%20pdf%20Attributes_of_STEM_Education-1.pdf

Nabilah, L. N. (2020). Development Of 21st Century Skills In Physics Learning In High School Using The Creative Problem Solving Model. Osf Preprints (pp. 1–10). https://doi.org/10.31219/osf.io/6vwhd

NAEA. (2019). Position statement on STEAM education. National Art Education Association. https://www.arteducators.org/advocacy-policy/articles/552-naea-position-statement-on-steam-education

National Academy of Engineering [NAE] & National Research Council [NRC]. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. L. Katehi and M. Feder (Eds.). The National Academies.

Nosich, G. M. (2012). Eleştirel düşünme ve disiplinler arası eleştirel düşünme rehberi [The guide of critical thinking and interdisciplinary critical thinking](B. Aybek Çev.). Ankara: Anı.

Nurani, Y., & Mayangasri, T. (2017). Pengembangan Model Kegiatan Sentra Bermain Dalam Mengembangkan Kreativitas Anak Usia Dini. Jurnal Pendidikan Usia Dini, 11(2). https://doi.org/10.21009/JPUD.112.15

Oner, A., Nite, S., Capraro, R., & Capraro, M. (2016). From STEM to STEAM: Students’ Beliefs About the Use of Their Creativity. Steam, 2(2), 1–14. https://doi.org/10.5642/steam.20160202.06

Ozkan, G., & Umdu Topsakal, U. (2021). Investigating the effectiveness of STEAM education on students’ conceptual understanding of force and energy topics. Research in Science & Technological Education, 39(4), 441–460. https://doi.org/10.1080/02635143.2020.1769586

Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31–43. https://doi.org/10.1016/j.tsc.2018.10.002

Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1), 1–12. https://doi.org/10.1111/ssm.12201

Reed, K. (2010). Skill sets required for environmental engineering and where they are learned. University of the Pacific.

Retnowati, S., & Subanti, S. (2020). The STEM Approach: The Development of Rectangular Module to Improve Critical Thinking Skill. International Online Journal of Education and Teaching, 7(1), 2–15. https://eric.ed.gov/?id=EJ1244234

Ridley, K. (2007). Thinking skills in the early years: a literature review. Early Childhood Folio, 11, 36–39. https://doi.org/10.18296/ecf.0198

Ridwan & Sunarto. (2009). Pengantar Statistika Untuk Penelitian Pendidikan, Sosial, Ekonomi, Komunikasi, dan Bisnis. Bandung: Alfabeta.

Robinson, N. (2016). A case study exploring the effects of using an integrative STEM curriculum on eighth grade students’ performance and engagement in the mathematics classroom.

Rolling Jr, J. H. (2016). Reinventing the STEAM engine for art+ design education. In Art Education (Vol. 69, Issue 4, pp. 4–7). Taylor & Francis. https://doi.org/10.1080/00043125.2016.1176848

Satu, J. K., Seok-Eon, J., Satu, J. K., & Jin, S. (2019). Sebuah Meta-Analisis tentang Pengaruh Pendidikan STEAM sebagai Kebijakan Pendidikan Pemerintah Korea. Masy. Konvergensi Korea, 10, 1–9.

Savery, J. R., & Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational Technology, 35(5), 31–38. https://www.jstor.org/stable/44428296

Schachter, R. E., Gerde, H. K., & Hatton-Bowers, H. (2019). Guidelines for selecting professional development for early childhood teachers. Early Childhood Education Journal, 47(4), 395–408. https://doi.org/10.1007/s10643-019-00942-8

Sharapan, H. (2012). From STEM to STEAM How Early Childhood Educators Can Apply Fred Rogers’ Approach. YC Young Children, 67(1), 36–40. https://eric.ed.gov/?id=EJ975479

Soon Beom Kwon, D. N. (2011). Pengaruh Pendidikan Konvergensi berbasis STEAM pada Siswa Sekolah Dasar Kepribadian Kreatif (pp. 1–3).

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO robot demo: engaging young children in programming and engineering. Proceedings of the 14th International Conference on Interaction Design and Children, 418–421. https://doi.org/10.1145/2771839.2771868

Sutrisno, M., & Verhaak, C. (1994). Estetika: Filsafat Keindahan. Penerbit Kanisius.

Ure, H. (2012). The effect of the engineering design process on the critical thinking skills of high school students. Brigham Young University.

Wahyuningsih, S., Pudyaningtyas, A. R., Hafidah, R., Syamsuddin, M. M., Nurjanah, N. E., & Rasmani, U. E. E. (2019). Efek Metode STEAM pada Kreatifitas Anak Usia 5-6 Tahun. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 4(1). https://doi.org/10.31004/obsesi.v4i1.305

Walsh, G., Murphy, P., & Dunbar, C. (2007). Thinking skills in the early years: A guide for practitioners. Stranmillis University College.

Willingham, D. T. (2007). Critical thinking: Why it is so hard to teach? American Federation of Teachers Summer 2007, p. 8-19. https://eric.ed.gov/?id=EJ794281

Wliliawati, H., & GA, R. P. (2020). Implementasi Pendidikan STEAM untuk Meningkatkan Konsep Penguasaan Implementasi Pendidikan STEAM untuk Meningkatkan Konsep Penguasaan. J. Seri Konf. IOP Ilmu Dan Tek. Mater., 288, 1–7.

Yakman, G., & Lee, H. (2012). Exploring the Exemplary STEAM Education in the U.S. as a Practical Educational Framework for Korea. Journal of the Korean Association For Research in Science Education, 32. https://doi.org/10.14697/jkase.2012.32.6.1072

Zubaidah, S. (2019). STEAM (science, technology, engineering, arts, and mathematics): Pembelajaran untuk memberdayakan keterampilan abad ke-21. Seminar Nasional Matematika Dan Sains, September, 1–18.


Refbacks

  • There are currently no refbacks.