Pengembangan Instrumen E-Asesmen untuk Deteksi Dini Anak Berkesulitan Belajar di Sekolah Dasar : Suatu Kajian Sistematik

Authors

  • Tingtin Sumartini Pendidikan Guru Sekolah Dasar, Universitas Pendidikan Indonesia, Indonesia
  • Ghullam Hamdu Pendidikan Guru Sekolah Dasar, Universitas Pendidikan Indonesia, Indonesia
  • Syarip Hidayat Pendidikan Guru Sekolah Dasar, Universitas Pendidikan Indonesia, Indonesia

DOI:

https://doi.org/10.31004/obsesi.v9i5.7059

Keywords:

E-Asesmen, Deteksi Dini, Anak Berkesulitan Belajar

Abstract

Pendidikan inklusif di sekolah dasar menuntut adanya deteksi dini terhadap anak berkesulitan belajar (ABB) guna mencegah kegagalan akademik dan mendukung intervensi yang tepat. Kajian ini bertujuan menelaah secara sistematis pengembangan instrumen e-asesmen digital untuk deteksi dini kesulitan membaca, menulis, dan berhitung permulaan melalui metode Systematic Literature Review (SLR) dengan protokol PRISMA. Sebanyak 18 artikel yang terbit antara tahun 2018–2024 dianalisis secara tematik. Hasil menunjukkan bahwa jenis kesulitan yang paling banyak dikaji meliputi disleksia, diskalkulia, ADHD, dan autisme. Teknologi yang dominan digunakan adalah machine learning seperti Random Forest dan K-Fold Cross Validation, serta platform digital seperti Google Formulir dan aplikasi berbasis web/mobile. Instrumen digital terbukti meningkatkan efisiensi skrining dan akurasi deteksi dini, namun penerapannya masih terbatas di sekolah dasar Indonesia. Kajian ini merekomendasikan pengembangan instrumen yang valid, reliabel, dan kontekstual sesuai kebutuhan guru serta infrastruktur lokal, guna memperkuat asesmen inklusif berbasis teknologi.

Downloads

Download data is not yet available.

References

Abdesslem, N., Hamrouni, S., Shephard, R. J., & Chelly, M. S. (2019). Efficacy of cognitive-behavioral therapy and deep relaxation for children with attention-deficit hyperactivity disorder. Movement & Sport Sciences - Science & Motricité, 103, 19–26. https://doi.org/10.1051/sm/2018030

Abdurrahman, M. (2012). Anak berkesulitan belajar: Teori, diagnosis dan remediasinya (1st ed.).

Afandi, M. R., Ramdhani, M. A., Rizky, M., Setiawan, E., Majid, A., Abdurrahman, U. K. H., & Pekalongan, W. (2023). Tantangan dan strategi dalam menggunakan assessment untuk meningkatkan pembelajaran di era digital.

Alshenaifi, R., Nguyen, N. P., & Feng, J. H. (2022). Mining and understanding Arabic tweets related to cognitive disabilities. 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 596–603. https://doi.org/10.1109/WI-IAT55865.2022.00094

Alteneiji, M. R., Alqaydi, L. M., Tariq, M. U., & Professor, A. (2020). Autism spectrum disorder diagnosis using optimal machine learning methods. International Journal of Advanced Computer Science and Applications, 11(9).

Al-Zubidy, A., & Carver, J. C. (2019). Identification and prioritization of SLR search tool requirements: An SLR and a survey. Empirical Software Engineering, 24(1), 139–169. https://doi.org/10.1007/s10664-018-9626-5

Ashari, M. K., Athoillah, S., & Faizin, M. (2023). Model E-Asesmen berbasis aplikasi pada sekolah menengah atas di era digital: Systematic literature review. TA’DIBUNA: Jurnal Pendidikan Agama Islam, 6(2), 132. https://doi.org/10.30659/jpai.6.2.132-150

Aulia, F. (2014). Penyesuaian diri anak luar biasa (Studi kasus Ade Irawan, Juara Pianis Tunanetra Indonesia). Madrasah: Jurnal Pendidikan Dan Pembelajaran Dasar. https://doi.org/https://doi.org/10.18860/jt.v6i2.3315

Ayu, D. S., Mahendra, D. A., Dari, Y. W., Salsabila, N. E., Iasha, V., & Pelita Bangsa, U. (2024). Jurnal pengembangan dan penelitian pendidikan peran teknologi dalam penilaian pembelajaran di sekolah dasar. Jurnal Pengembangan dan Penelitian Pendidikan.

Bagnoud, J., Mathieu, R., Dewi, J., Masson, S., Gonzalez-Monge, S., Kasikci, Z., & Thevenot, C. (2021). An investigation of the possible causes of arithmetic difficulties in children with dyscalculia. In Cognitive Psychology (Vol. 121).

Beckett, J. (2024). Dyslexia: ‘The right diagnosis … The wrong treatment.’ Support for Learning, 39(2), 71–84. https://doi.org/10.1111/1467-9604.12472

Binte, S., & Choya, Z. (2021). Development of an interactive dashboard for analyzing autism spectrum disorder (ASD) data using machine learning techniques.

Boulanger, J. (2022). Ways of knowing, ways of being: Exploring a good life through participatory audio/visual methods with people labelled with an intellectual disability. https://dx.doi.org/10.20381/ruor-27991

Caron, V., Jeanneret, N., Giroux, M., Guerrero, L., Ouimet, M., Forgeot d’Arc, B., Soulières, I., & Courcy, I. (2022). Sociocultural context and autistics’ quality of life: A comparison between Québec and France. Autism, 26(4), 900–913. https://doi.org/10.1177/13623613211035229

Caselles?Pina, L., Quesada?López, A., Sújar, A., Hernández, E. M. G., & Delgado?Gómez, D. (2024). A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder. European Journal of Neuroscience, 60(3), 4115–4127. https://doi.org/10.1111/ejn.16288

Dessemontet, R. S., Chambrier, A.-F., Martinet, C., Meuli, N., & Linder, A.-L. (2021). Effects of a phonics-based intervention on the reading skills of students with intellectual disability. Research in Developmental Disabilities, 111, 103883. https://doi.org/10.1016/j.ridd.2021.103883

Du, X., & Lyublinskaya, I. (2022). Designing professional development for special education teachers: Effects on assistive technology competency in developing inquiry-based student experiences. Journal of Digital Learning in Teacher Education, 38(4), 199–210. https://doi.org/10.1080/21532974.2022.2113938

Foldnes, N., Uppstad, P. H., Grønneberg, S., & Thomson, J. M. (2024). School entry detection of struggling readers using gameplay data and machine learning. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1487694

Frigaux, A., Clinicien, P., Lighezzolo-Alnot, J., & Evrard, R. (2021). Differential diagnosis on the autism spectrum: Theorizing an “ordinary autism.”

Georgiou, G. P., & Theodorou, E. (2024). Detection of Developmental Language Disorder in Cypriot Greek Children Using a Neural Network Algorithm. Journal of Technology in Behavioral Science. https://doi.org/10.1007/s41347-024-00460-4

Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020?compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). https://doi.org/10.1002/cl2.1230

Hadi, S., Ismara, K. I., & Tanumihardja, E. (2015). Pengembangan sistem tes diagnostik kesulitan belajar kompetensi dasar kejuruan siswa SMK. Jurnal Penelitian Dan Evaluasi Pendidikan, 19(2), 168–175. https://doi.org/10.21831/pep.v19i2.5577

Hamidi, F., Azizolahi, M., & Rasti, J. (2020). Effectiveness of computer games on improving the attention and working memory of children with attention deficit hyperactivity disorder.

Hussey, A. (2020). Dramatic arts and the inclusion of students with intellectual disabilities in secondary school: A self-study of my transformative experience with the third period thespians. http://hdl.handle.net/10464/15005

Margaret Mary, T., Prakash, V. S., Divya, K. S., & George, A. (2023). Hybrid ML algorithms for learning disability forecast in school going children using Python in machine learning techniques. 7th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2023 - Proceedings, 1043–1049. https://doi.org/10.1109/ICECA58529.2023.10395259

Mohd Radzi, S. F., Hassan, M. S., & Mohd Radzi, M. A. H. (2022). Comparison of classification algorithms for predicting autistic spectrum disorder using WEKA modeler. BMC Medical Informatics and Decision Making, 22(1), 306. https://doi.org/10.1186/s12911-022-02050-x

Muthisamy, T. M., Jayabalan, M., & Rana, M. E. (2020). Analysis of autistic spectrum disorder screening data for adolescents. International Journal of Current Research and Review, 12(19), 23–30. https://doi.org/10.31782/IJCRR.2020.121927

Nduru, M. P. (2016). Identifikasi dan asesmen kesulitan belajar anak. Proseding Seminar Nasional PGSD UPY Dengan Tema Strategi Mengatasi Kesulitan Belajar Ketika Murid Anda Seorang Disleksia.

Neuhaus, E., Osuna, A., Tagavi, D. M., Shah-Hosseini, S., Simmons, S., Gerdts, J., & Thompson, A. D. (2022). Clinical characteristics of youth with autism or developmental disability during inpatient psychiatric admission. Journal of Clinical Medicine, 11(21), 6328. https://doi.org/10.3390/jcm11216328

Pati, D., & Lorusso, L. N. (2018). How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal, 11(1), 15–30. https://doi.org/10.1177/1937586717747384

Peral, J., Gil, D., Rotbei, S., Amador, S., Guerrero, M., & Moradi, H. (2020). A machine learning and integration based architecture for cognitive disorder detection used for early autism screening. Electronics (Switzerland), 9(3). https://doi.org/10.3390/electronics9030516

Redecker, C., & Johannessen, Ø. (2013). Changing assessment — Towards a new assessment paradigm using ICT. European Journal of Education, 48(1), 79–96. https://doi.org/10.1111/ejed.12018

Schendel, D., Ejlskov, L., Overgaard, M., Jinwala, Z., Kim, V., Parner, E., Kalkbrenner, A. E., Acosta, C. L., Fallin, M. D., Xie, S., Mortensen, P. B., & Lee, B. K. (2024). 3?generation family histories of mental, neurologic, cardiometabolic, birth defect, asthma, allergy, and autoimmune conditions associated with autism: An open?source catalog of findings. Autism Research, 17(10), 2144–2155. https://doi.org/10.1002/aur.3232

Suryaningrum, C., Muji, I. T., & Zainul, A. (2016). Cahyaning Suryaningrum_Pengembangan model deteksi dini anak berkebutuhan khusus (ABK) pada tingkat pendidikan anak usia dini (PAUD). Jurnal Ilmu Pendidikan, 4. https://doi.org/10.22219/jipt.v4i1.2878

Wahyudi, N. G., & Jatun. (2024). Indonesian research journal on education integrasi teknologi dalam pendidikan: Tantangan dan peluang pembelajaran digital di sekolah dasar. Indonesian Research Journal on Education, 4. https://irje.org/irje/article/view/1138/812

Widiastuti, N. L. G. K. (2019). Ni Luh Gede Karang Widiastuti_Karakteristik dan model layanan pendidikan bagi anak berkebutuhan khusus. Jurnal Kajian Pendidikan Widya Accarya FKIP Universitas Dwijendra. https://doi.org/10.46650/wa.10.1.680.%25p

Downloads

Published

17-06-2025

How to Cite

Sumartini, T., Hamdu, G., & Hidayat, S. (2025). Pengembangan Instrumen E-Asesmen untuk Deteksi Dini Anak Berkesulitan Belajar di Sekolah Dasar : Suatu Kajian Sistematik. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 9(5), 1568–1576. https://doi.org/10.31004/obsesi.v9i5.7059

Issue

Section

Articles