- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the works authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journals published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Pengembangan Instrumen E-Asesmen untuk Deteksi Dini Anak Berkesulitan Belajar di Sekolah Dasar : Suatu Kajian Sistematik
DOI:
https://doi.org/10.31004/obsesi.v9i5.7059Keywords:
E-Asesmen, Deteksi Dini, Anak Berkesulitan BelajarAbstract
Pendidikan inklusif di sekolah dasar menuntut adanya deteksi dini terhadap anak berkesulitan belajar (ABB) guna mencegah kegagalan akademik dan mendukung intervensi yang tepat. Kajian ini bertujuan menelaah secara sistematis pengembangan instrumen e-asesmen digital untuk deteksi dini kesulitan membaca, menulis, dan berhitung permulaan melalui metode Systematic Literature Review (SLR) dengan protokol PRISMA. Sebanyak 18 artikel yang terbit antara tahun 2018–2024 dianalisis secara tematik. Hasil menunjukkan bahwa jenis kesulitan yang paling banyak dikaji meliputi disleksia, diskalkulia, ADHD, dan autisme. Teknologi yang dominan digunakan adalah machine learning seperti Random Forest dan K-Fold Cross Validation, serta platform digital seperti Google Formulir dan aplikasi berbasis web/mobile. Instrumen digital terbukti meningkatkan efisiensi skrining dan akurasi deteksi dini, namun penerapannya masih terbatas di sekolah dasar Indonesia. Kajian ini merekomendasikan pengembangan instrumen yang valid, reliabel, dan kontekstual sesuai kebutuhan guru serta infrastruktur lokal, guna memperkuat asesmen inklusif berbasis teknologi.
Downloads
References
Abdesslem, N., Hamrouni, S., Shephard, R. J., & Chelly, M. S. (2019). Efficacy of cognitive-behavioral therapy and deep relaxation for children with attention-deficit hyperactivity disorder. Movement & Sport Sciences - Science & Motricité, 103, 19–26. https://doi.org/10.1051/sm/2018030
Abdurrahman, M. (2012). Anak berkesulitan belajar: Teori, diagnosis dan remediasinya (1st ed.).
Afandi, M. R., Ramdhani, M. A., Rizky, M., Setiawan, E., Majid, A., Abdurrahman, U. K. H., & Pekalongan, W. (2023). Tantangan dan strategi dalam menggunakan assessment untuk meningkatkan pembelajaran di era digital.
Alshenaifi, R., Nguyen, N. P., & Feng, J. H. (2022). Mining and understanding Arabic tweets related to cognitive disabilities. 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 596–603. https://doi.org/10.1109/WI-IAT55865.2022.00094
Alteneiji, M. R., Alqaydi, L. M., Tariq, M. U., & Professor, A. (2020). Autism spectrum disorder diagnosis using optimal machine learning methods. International Journal of Advanced Computer Science and Applications, 11(9).
Al-Zubidy, A., & Carver, J. C. (2019). Identification and prioritization of SLR search tool requirements: An SLR and a survey. Empirical Software Engineering, 24(1), 139–169. https://doi.org/10.1007/s10664-018-9626-5
Ashari, M. K., Athoillah, S., & Faizin, M. (2023). Model E-Asesmen berbasis aplikasi pada sekolah menengah atas di era digital: Systematic literature review. TA’DIBUNA: Jurnal Pendidikan Agama Islam, 6(2), 132. https://doi.org/10.30659/jpai.6.2.132-150
Aulia, F. (2014). Penyesuaian diri anak luar biasa (Studi kasus Ade Irawan, Juara Pianis Tunanetra Indonesia). Madrasah: Jurnal Pendidikan Dan Pembelajaran Dasar. https://doi.org/https://doi.org/10.18860/jt.v6i2.3315
Ayu, D. S., Mahendra, D. A., Dari, Y. W., Salsabila, N. E., Iasha, V., & Pelita Bangsa, U. (2024). Jurnal pengembangan dan penelitian pendidikan peran teknologi dalam penilaian pembelajaran di sekolah dasar. Jurnal Pengembangan dan Penelitian Pendidikan.
Bagnoud, J., Mathieu, R., Dewi, J., Masson, S., Gonzalez-Monge, S., Kasikci, Z., & Thevenot, C. (2021). An investigation of the possible causes of arithmetic difficulties in children with dyscalculia. In Cognitive Psychology (Vol. 121).
Beckett, J. (2024). Dyslexia: ‘The right diagnosis … The wrong treatment.’ Support for Learning, 39(2), 71–84. https://doi.org/10.1111/1467-9604.12472
Binte, S., & Choya, Z. (2021). Development of an interactive dashboard for analyzing autism spectrum disorder (ASD) data using machine learning techniques.
Boulanger, J. (2022). Ways of knowing, ways of being: Exploring a good life through participatory audio/visual methods with people labelled with an intellectual disability. https://dx.doi.org/10.20381/ruor-27991
Caron, V., Jeanneret, N., Giroux, M., Guerrero, L., Ouimet, M., Forgeot d’Arc, B., Soulières, I., & Courcy, I. (2022). Sociocultural context and autistics’ quality of life: A comparison between Québec and France. Autism, 26(4), 900–913. https://doi.org/10.1177/13623613211035229
Caselles?Pina, L., Quesada?López, A., Sújar, A., Hernández, E. M. G., & Delgado?Gómez, D. (2024). A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder. European Journal of Neuroscience, 60(3), 4115–4127. https://doi.org/10.1111/ejn.16288
Dessemontet, R. S., Chambrier, A.-F., Martinet, C., Meuli, N., & Linder, A.-L. (2021). Effects of a phonics-based intervention on the reading skills of students with intellectual disability. Research in Developmental Disabilities, 111, 103883. https://doi.org/10.1016/j.ridd.2021.103883
Du, X., & Lyublinskaya, I. (2022). Designing professional development for special education teachers: Effects on assistive technology competency in developing inquiry-based student experiences. Journal of Digital Learning in Teacher Education, 38(4), 199–210. https://doi.org/10.1080/21532974.2022.2113938
Foldnes, N., Uppstad, P. H., Grønneberg, S., & Thomson, J. M. (2024). School entry detection of struggling readers using gameplay data and machine learning. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1487694
Frigaux, A., Clinicien, P., Lighezzolo-Alnot, J., & Evrard, R. (2021). Differential diagnosis on the autism spectrum: Theorizing an “ordinary autism.”
Georgiou, G. P., & Theodorou, E. (2024). Detection of Developmental Language Disorder in Cypriot Greek Children Using a Neural Network Algorithm. Journal of Technology in Behavioral Science. https://doi.org/10.1007/s41347-024-00460-4
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020?compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). https://doi.org/10.1002/cl2.1230
Hadi, S., Ismara, K. I., & Tanumihardja, E. (2015). Pengembangan sistem tes diagnostik kesulitan belajar kompetensi dasar kejuruan siswa SMK. Jurnal Penelitian Dan Evaluasi Pendidikan, 19(2), 168–175. https://doi.org/10.21831/pep.v19i2.5577
Hamidi, F., Azizolahi, M., & Rasti, J. (2020). Effectiveness of computer games on improving the attention and working memory of children with attention deficit hyperactivity disorder.
Hussey, A. (2020). Dramatic arts and the inclusion of students with intellectual disabilities in secondary school: A self-study of my transformative experience with the third period thespians. http://hdl.handle.net/10464/15005
Margaret Mary, T., Prakash, V. S., Divya, K. S., & George, A. (2023). Hybrid ML algorithms for learning disability forecast in school going children using Python in machine learning techniques. 7th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2023 - Proceedings, 1043–1049. https://doi.org/10.1109/ICECA58529.2023.10395259
Mohd Radzi, S. F., Hassan, M. S., & Mohd Radzi, M. A. H. (2022). Comparison of classification algorithms for predicting autistic spectrum disorder using WEKA modeler. BMC Medical Informatics and Decision Making, 22(1), 306. https://doi.org/10.1186/s12911-022-02050-x
Muthisamy, T. M., Jayabalan, M., & Rana, M. E. (2020). Analysis of autistic spectrum disorder screening data for adolescents. International Journal of Current Research and Review, 12(19), 23–30. https://doi.org/10.31782/IJCRR.2020.121927
Nduru, M. P. (2016). Identifikasi dan asesmen kesulitan belajar anak. Proseding Seminar Nasional PGSD UPY Dengan Tema Strategi Mengatasi Kesulitan Belajar Ketika Murid Anda Seorang Disleksia.
Neuhaus, E., Osuna, A., Tagavi, D. M., Shah-Hosseini, S., Simmons, S., Gerdts, J., & Thompson, A. D. (2022). Clinical characteristics of youth with autism or developmental disability during inpatient psychiatric admission. Journal of Clinical Medicine, 11(21), 6328. https://doi.org/10.3390/jcm11216328
Pati, D., & Lorusso, L. N. (2018). How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal, 11(1), 15–30. https://doi.org/10.1177/1937586717747384
Peral, J., Gil, D., Rotbei, S., Amador, S., Guerrero, M., & Moradi, H. (2020). A machine learning and integration based architecture for cognitive disorder detection used for early autism screening. Electronics (Switzerland), 9(3). https://doi.org/10.3390/electronics9030516
Redecker, C., & Johannessen, Ø. (2013). Changing assessment — Towards a new assessment paradigm using ICT. European Journal of Education, 48(1), 79–96. https://doi.org/10.1111/ejed.12018
Schendel, D., Ejlskov, L., Overgaard, M., Jinwala, Z., Kim, V., Parner, E., Kalkbrenner, A. E., Acosta, C. L., Fallin, M. D., Xie, S., Mortensen, P. B., & Lee, B. K. (2024). 3?generation family histories of mental, neurologic, cardiometabolic, birth defect, asthma, allergy, and autoimmune conditions associated with autism: An open?source catalog of findings. Autism Research, 17(10), 2144–2155. https://doi.org/10.1002/aur.3232
Suryaningrum, C., Muji, I. T., & Zainul, A. (2016). Cahyaning Suryaningrum_Pengembangan model deteksi dini anak berkebutuhan khusus (ABK) pada tingkat pendidikan anak usia dini (PAUD). Jurnal Ilmu Pendidikan, 4. https://doi.org/10.22219/jipt.v4i1.2878
Wahyudi, N. G., & Jatun. (2024). Indonesian research journal on education integrasi teknologi dalam pendidikan: Tantangan dan peluang pembelajaran digital di sekolah dasar. Indonesian Research Journal on Education, 4. https://irje.org/irje/article/view/1138/812
Widiastuti, N. L. G. K. (2019). Ni Luh Gede Karang Widiastuti_Karakteristik dan model layanan pendidikan bagi anak berkebutuhan khusus. Jurnal Kajian Pendidikan Widya Accarya FKIP Universitas Dwijendra. https://doi.org/10.46650/wa.10.1.680.%25p
Downloads
Published
Check Article Index
How to Cite
Issue
Section
License
Copyright (c) 2025 Tingtin Sumartini, Ghullam Hamdu, Syarip Hidayat (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms: