Pengembangan Model Pembelajaran Sorting Predict-think Discovery untuk Meningkatkan Kemampuan Mengenal Pola

Elvira Khori Ulni(1Mail), Suparno Suparno(2),
(1) Pendidikan Anak Usia Dini, Universitas Negeri Yogyakarta, Indonesia
(2) Pendidikan Anak Usia Dini, Universitas Negeri Yogyakarta, Indonesia

Mail Corresponding Author
Copyright (c) 2020 Elvira Khori Ulni

DOI : https://doi.org/10.31004/obsesi.v5i1.576

Download Full Text:   [File Size  : 664KB]  Language : ID
Received : 2020-06-02  |  Published : 2020-06-11

Abstract


Kemampuan mengenal pola merupakan kemampuan dasar yang harus dimiliki anak dalam memahami matematika awal, termasuk pola warna dan bentuk. Penelitian ini bertujuan untuk menghasilkan model pembelajaran sorting predict-think discovery yang layak untuk meningkatkan kemampuan mengenal pola warna dan bentuk anak usia 5-6 tahun, dan mengetahui efektivitasnya dalam meningkatkan kemampuan mengenal pola warna dan bentuk anak usia 5-6 tahun. Penelitian pengembangan mengadaptasi model penelitian pengembangan Borg dan Gall dan uji efektivitas dilakukan dengan equivalent time series design menggunakan uji wilcoxon sign rank test. Hasil penelitian mengungkapkan bahwa model pembelajaran sorting predict-think discovery dinyatakan layak berdasarkan kriteria kelayakan oleh ahli, guru, dan respon anak dengan kategori berkembang sesuai harapan; model pembelajaran sorting predict-think discovery efektif untuk meningkatkan kemampuan mengenal pola warna dan bentuk pada anak usia 5-6 tahun.


Keywords


model pembelajaran; sorting predict-think discovery; pola warna dan bentuk

References


Abdisa, G., & Getinet, T. (2012). The effect of guided discovery on students ’ Physics achievement. Latin-American Journal of Physics Education, 6(4), 530–537.

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428

Gadzichowski, K. M., Peterson, M. S., Pasnak, R., Bock, A. M., Fetterer-Robinson, S. O. J. M., & Schmerold, K. L. (2018). A Place for Patterning in Cognitive Development. Psychology, 09(08), 2073–2082. https://doi.org/10.4236/psych.2018.98118

Greenes, C., Ginsburg, H. P., & Balfanz, R. (2004). Big Math for Little Kids. Early Childhood Research Quarterly, 19(1), 159–166. https://doi.org/10.1016/j.ecresq.2004.01.010

Hong, N. Van, Thuy An, N. T. T. A., & Triet, L. V. M. (2017). Teaching the Arithmetic Sequence through Guided Discovery Learning: A Pedagogical Experiment in Viet Nam. IRA International Journal of Education and Multidisciplinary Studies (ISSN 2455-2526), 6(3), 280. https://doi.org/10.21013/jems.v6.n3.p9

Husna, Ikhsan, M., Fatimah, S., Keguruan dan Ilmu Pendidikan Matematika Unsyiah Banda Aceh, F., & Pendidikan Matematika dan Ilmu Pengetahuan Alam UPI Bandung, F. (2013). Peningkatan Kemampuan Pemecahan Masalah dan Komunikasi Matematis Siswa Sekolah Menengah Pertama melalui Model Pembelajaran Kooperatif Tipe Think-Pair-Share (TPS). Jurnal Peluang, 1(2).

Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early Math Matters: Kindergarten Number Competence and Later Mathematics Outcomes. Developmental Psychology, 45(3), 850–867. https://doi.org/10.1037/a0014939

Joyce, B. R., Weil, M., & Calhoun, E. (1996). Models of Teaching, 5th Edition. In Models of teaching.

Klitgaard, R., & Gardner, H. (1984). Frames of Mind: The Theory of Multiple Intelligences. Journal of Policy Analysis and Management, 3(4), 627. https://doi.org/10.2307/3324560

Lüken, M. M., & Kampmann, R. (2018). The Influence of Fostering Children’s Patterning Abilities on Their Arithmetic Skills in Grade 1. https://doi.org/10.1007/978-3-319-73432-3_4

Mayer, R. E. (2004). Should There Be a Three-Strikes Rule against Pure Discovery Learning? The Case for Guided Methods of Instruction. American Psychologist, Vol. 59, pp. 14–19. https://doi.org/10.1037/0003-066X.59.1.14

Miller, M. R., Rittle-Johnson, B., Loehr, A. M., & Fyfe, E. R. (2016). The Influence of Relational Knowledge and Executive Function on Preschoolers’ Repeating Pattern Knowledge. Journal of Cognition and Development. https://doi.org/10.1080/15248372.2015.1023307

NCTM. (2013). Reasoning and Sense Making. The Mathematics Teacher, 106(8), 635. https://doi.org/10.5951/mathteacher.106.8.0635

Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., & Spitler, M. E. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Childhood Research Quarterly, 36, 550–560. https://doi.org/10.1016/j.ecresq.2016.02.003

Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–268.

Pressley, M., Wood, E., Woloshyn, V. E., Martin, V., King, A., & Menke, D. (1992). Encouraging Mindful Use of Prior Knowledge: Attempting to Construct Explanatory Answers Facilitates Learning. Educational Psychologist, 27(1), 91–109. https://doi.org/10.1207/s15326985ep2701_7

Provasnik, S., Malley, L., Stephens, M., Landeros, K., Perkins, R., & Tang, J. H. (2016). Highlights From TIMSS And TIMSS Advanced 2015: Mathematics And Science Achievement Of U.S. Students In Grades 4 And 8 And In Advanced Courses At The End Of High School In An International Context. (NCES 2017-002). National Center for Education Statistics. Retrieved from http://nces.ed.gov/pubsearch

Raba, A. A. A. (2017). The Influence of Think-Pair-Share (TPS) on Improving Students’ Oral Communication Skills in EFL Classrooms. Creative Education, 08(01), 12–23. https://doi.org/10.4236/ce.2017.81002

Reys, R., Lindquist, M., Lambdin, D. V., & Nancy L, S. (2002). Helping Children Learn Mathematics. In Helping Children Learn Mathematics (11th ed.). https://doi.org/10.17226/10434

Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94(3), 249–273. https://doi.org/10.1016/j.jecp.2006.02.002

Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early Math Trajectories: Low-Income Children’s Mathematics Knowledge From Ages 4 to 11. Child Development, 88(5), 1727–1742. https://doi.org/10.1111/cdev.12662

Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., & McEldoon, K. L. (2013). Emerging Understanding of Patterning in 4-Year-Olds. Journal of Cognition and Development, 14(3), 376–396. https://doi.org/10.1080/15248372.2012.689897

Rittle-Johnson, B., Zippert, E. L., & Boice, K. L. (2019). The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 46, 166–178. https://doi.org/10.1016/j.ecresq.2018.03.006

Rivera, F. D., & Becker, J. R. (2008). Middle school children’s cognitive perceptions of constructive and deconstructive generalizations involving linear figural patterns. ZDM - International Journal on Mathematics Education, 40(1), 65–82. https://doi.org/10.1007/s11858-007-0062-z

Sarama, J. A., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. In Early Childhood Mathematics Education Research: Learning Trajectories for Young Children. https://doi.org/10.4324/9780203883785

Slavin, R. E. (2010). Cooperative learning. In International Encyclopedia of Education (pp. 177–183). https://doi.org/10.1016/B978-0-08-044894-7.00494-2

Steen, L. A. (1988). The science of patterns. Science, Vol. 240, pp. 611–616. https://doi.org/10.1126/science.240.4852.611

Warren, E., & Miller, J. (2010). Exploring four year old Indigenous students’ ability to pattern. International Research in Early Childhood Education, 1(2), 42–56.

Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s Past Is Prologue: Relations Between Early Mathematics Knowledge and High School Achievement. Educational Researcher. https://doi.org/10.3102/0013189X14553660

Whitaker, B. (2014). Using Guided Discovery as an Active Learning Strategy. NACTA Journal, 58(1), 85. Retrieved from http://search.proquest.com/docview/1508540895/

Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between aegebraic thinking and aegebraic notation. Educational Studies in Mathematics, 49(3), 361–378. https://doi.org/10.1023/A:1020291317178


Article Metrics

 Abstract Views : 146 times
 PDF Downloaded : 46 times


This article can be traced from:

Refbacks

  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.